Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.006
Filtrar
1.
Eur J Med Chem ; 265: 116073, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38169270

RESUMO

Blocking iron uptake and metabolism has been emerging as a promising therapeutic strategy for the development of novel antimicrobial compounds. Like all mycobacteria, M. abscessus (Mab) has evolved several countermeasures to scavenge iron from host carrier proteins, including the production of siderophores, which play a crucial role in these processes. In this study, we solved, for the first time, the crystal structure of Mab-SaS, the first enzyme involved in the biosynthesis of siderophores. Moreover, we screened a small, focused library and identified a compound exhibiting a potent inhibitory effect against Mab-SaS (IC50 ≈ 2 µM). Its binding mode was investigated by means of Induced Fit Docking simulations, performed on the crystal structure presented herein. Furthermore, cytotoxicity data and pharmacokinetic predictions revealed the safety and drug-likeness of this class of compounds. Finally, the crystallographic data were used to optimize the model for future virtual screening campaigns. Taken together, the findings of our study pave the way for the identification of potent Mab-SaS inhibitors, based on both established and unexplored chemotypes.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Salicilatos/farmacologia , Sideróforos/farmacologia , Ferro
2.
Neurosci Lett ; 822: 137639, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38224829

RESUMO

INTRODUCTION: Tinnitus is the most common symptom of auditory system disorders. It affects the quality of life of millions of people, but it is still incurable in most cases. Vagus nerve stimulation (VNS) therapy is a potential new treatment for subjective tinnitus. In this study, transcutaneous vagus nerve stimulation (tVNS) combined with tones was utilized to treat salicylate-induced tinnitus since salicylate is a reliable and convenient approach for rapidly inducing tinnitus. METHODS: Wistar rats were divided into acoustic stimulation alone (AS, n = 6), tVNS alone (n = 6), and tVNS with AS (n = 6) groups for behavioral and electrophysiological tests. They were assessed by auditory brainstem response (ABR), prepulse inhibition (PPI), gap prepulse inhibition of the acoustic startle (GPIAS), social interactions, and aggressive behavior tests at baseline and seven days' post-salicylate (175 mg/kg, twice a day) injection. RESULTS: The inhibition percentage of the GPIAS test was significantly reduced post-salicylate injection in the tVNS and AS alone groups, while it was not significant in the tVNS with AS group. There was no significant difference in the mean percentage of the GPIAS test between the tVNS groups (with or without AS) after salicylate injections. Social interactions were significantly different in the AS alone group pre- and post-salicylate injections, but they were not significant in other groups. Moreover, the results of aggressive behavior tests showed significantly increased post-salicylate injections in the AS alone group, while they were not significant in the tVNS groups (with or without AS). CONCLUSIONS: The current study revealed that the application of tVNS alone produced improved social interaction and mood and alleviated salicylate-induced tinnitus severity. Moreover, combining tVNS with acoustic stimulation can prevent salicylate-induced tinnitus.


Assuntos
Zumbido , Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Humanos , Ratos , Animais , Zumbido/induzido quimicamente , Zumbido/terapia , Salicilatos/farmacologia , Estimulação do Nervo Vago/métodos , Qualidade de Vida , Ratos Wistar , Nervo Vago
3.
Physiol Plant ; 175(6): e14070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148221

RESUMO

We assumed that miRNAs might regulate the physiological and biochemical processes in plants through their effects on the redox system and phytohormones. To check this hypothesis, the transcriptome profile of wild-type Arabidopsis and lines with decreased ascorbate (Asc), glutathione (GSH), or salicylate (Sal) levels were compared. GSH deficiency did not influence the miRNA expression, whereas lower levels of Asc and Sal reduced the accumulation of 9 and 44 miRNAs, respectively, but only four miRNAs were upregulated. Bioinformatics analysis revealed that their over-represented target genes are associated with the synthesis of nitrogen-containing and aromatic compounds, nucleic acids, and sulphate assimilation. Among them, the sulphate reduction-related miR395 - ATP-sulfurylase couple was selected to check the assumed modulating role of the light spectrum. A greater induction of the Asc- and Sal-responsive miR395 was observed under sulphur starvation in far-red light compared to white and blue light in wild-type and GSH-deficient Arabidopsis lines. Sal deficiency inhibited the induction of miR395 by sulphur starvation in blue light, whereas Asc deficiency greatly reduced it independently of the spectrum. Interestingly, sulphur starvation decreased only the level of ATP sulfurylase 4 among the miR395 target genes in far-red light. The expression level of ATP sulfurylase 3 was higher in far-red light than in blue light in wild-type and Asc-deficient lines. The results indicate the coordinated control of miRNAs by the redox and hormonal system since 11 miRNAs were affected by both Asc and Sal deficiency. This process can be modulated by light spectrum, as shown for miR395.


Assuntos
Arabidopsis , MicroRNAs , Arabidopsis/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Sulfato Adenililtransferase/genética , Sulfato Adenililtransferase/metabolismo , Sulfato Adenililtransferase/farmacologia , Salicilatos/metabolismo , Salicilatos/farmacologia , Sulfatos/metabolismo , Sulfatos/farmacologia , Enxofre/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Cell Death Dis ; 14(10): 707, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898661

RESUMO

Aspirin and its active metabolite salicylate have emerged as promising agents for the chemoprevention of colorectal cancer (CRC). Moreover, aspirin suppresses the progression of established CRCs. However, the underlying molecular mechanisms are not completely understood. Here we found that salicylate induces the expression of the miR-34a and miR-34b/c genes, which encode tumor suppressive microRNAs, in a p53-independent manner. Salicylate activated AMPK, thereby activating NRF2, which directly induced miR-34a/b/c expression via ARE motifs. In addition, salicylate suppressed c-MYC, a known repressor of NRF2-mediated transactivation, via activating AMPK. The suppression of c-MYC by salicylate was necessary for NRF2-mediated activation of miR-34a/b/c. Inactivation of miR-34a/b/c largely abrogated the inhibitory effects of salicylate on migration, invasion and metastasis formation by CRC cells. In the future, aspirin and its derivates may be used therapeutically to activate miR-34a and miR-34b/c in tumors that have lost p53.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Salicilatos/farmacologia , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Aspirina/farmacologia , Regulação Neoplásica da Expressão Gênica
5.
Sci Rep ; 13(1): 17194, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821483

RESUMO

Fungicides or insecticides are popular means of controlling a variety of pathogens and insect pests; however, they can cause harmful effects on both human health and the environment. Different researchers have suggested using plant extracts, which have shown promise in managing fungi and insects. The purpose of this investigation was to explore the antifungal activities of an acetone extract made from the leaves of Indian Hawthorn (HAL) against phytopathogens that are known to harm maize crops, Fusarium verticillioides (OQ820154) and Rhizoctonia solani (OQ820155), and to evaluate the insecticidal property against Aphis gossypii Glover aphid. The HAL extract demonstrated significant antifungal activity against the two fungal pathogens tested, especially at the high dose of 2000 µg/mL. Laboratory tests on the LC20 of HAL extract (61.08 mg/L) versus buprofezin 25% WP (0.0051 mg/L) were achieved on A. gossypii Glover. HAL extract diminished the nymph's production over 72 h and their total reproductive rate. This extract was like buprofezin 25% WP in decreasing the daily reproductive rate, reproductive period, and mean survival percentage. Nevertheless, the newly-born nymphs of treated females with HAL extract attained the highest reduction in survival percentage at 46.00%. Equalized prolongations on the longevity of nymphs to 9.33, 8.33, and 7 days and the total life cycle to 15.00, 14.00, and 12.67 days were realized by HAL extract, buprofezin 25% WP, and the control, respectively. The olfactory choice test on the aphids showed the minimum attraction rate to HAL extract. The HPLC of HAL extract comprised an abundance of phenolic compounds (ferulic acid, gallic acid, 4-hydroxybenzoic acid, salicylic acid, ellagic acid, and pyrogallol), and the concentrations of these compounds vary widely, with salicylic acid being the most concentrated at 25.14 mg/mL. Among the flavonoids, epicatechin has the highest concentration at 11.69 mg/mL. The HAL extract GC-MS consists of various organic compounds, including sesquiterpenes, cyclopropenes, fatty acids, steroids, alcohols, ketones, esters, bufadienolides, opioids, and other organic compounds. The most abundant compounds in the sample are n-hexadecanoic acid (12.17%), followed by 5α, 7αH, 10α-eudesm-11-en-1α-ol (9.43%), and cis-13-octadecenoic acid (5.87%). Based on the findings, it can be inferred that the HAL extract may be a viable option for plants to combat both fungal and insect infestations. This presents an encouraging prospect for utilizing a natural and sustainable approach toward long-term pest management in plants.


Assuntos
Afídeos , Crataegus , Inseticidas , Animais , Humanos , Feminino , Inseticidas/farmacologia , Inseticidas/química , Antifúngicos/farmacologia , Compostos Fitoquímicos/farmacologia , Insetos , Extratos Vegetais/farmacologia , Salicilatos/farmacologia
6.
Biomed Pharmacother ; 168: 115671, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839107

RESUMO

Antipsychotic medications are used in the management of schizophrenia and a growing number of off-label conditions. While effective at reducing psychoses, these drugs possess noted metabolic side effects including weight gain, liver lipid accumulation and disturbances in glucose and lipid metabolism. To counter the side effects of antipsychotics standard of care has typically included metformin. Unfortunately, metformin does not protect against antipsychotic induced metabolic disturbances in all patients and thus additional treatment approaches are needed. One potential candidate could be salsalate, the prodrug of salicylate, which acts synergistically with metformin to improve indices of glucose and lipid metabolism in obese mice. The purpose of the current investigation was to compare the effects of salsalate, metformin and a combination of both drugs, on weight gain and indices of metabolic health in female mice treated with the antipsychotic, olanzapine. Herein we demonstrate that salsalate was equally as effective as metformin in protecting against olanzapine induced weight gain and liver lipid accumulation with no additional benefit of combining both drugs. Conversely, metformin treatment, either alone or in combination with salsalate, improved indices of glucose metabolism and increased energy expenditure in olanzapine treated mice. Collectively, our findings provide evidence that dual therapy with both metformin and salsalate could be an efficacious approach with which to dampen the metabolic consequences of antipsychotic medications.


Assuntos
Antipsicóticos , Metformina , Humanos , Feminino , Camundongos , Animais , Olanzapina , Antipsicóticos/uso terapêutico , Metformina/farmacologia , Metformina/uso terapêutico , Salicilatos/farmacologia , Aumento de Peso , Lipídeos , Glucose , Benzodiazepinas
7.
Sci Rep ; 13(1): 16023, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749362

RESUMO

Plant secondary metabolites (PSMs) can potentially reduce ruminal methane formation. However, related to differences in their molecular structures, it is not yet clear what causes an anti-methanogenic effect. In an in vitro system simulating rumen fermentation, we investigated the impact of eight compounds with distinct chemical characteristics (gallic and salicylic acids, tannic acid, catechin, epicatechin, quercetin, rutin, and salicin) when added to a basal feed (maize silage) at a concentration of 12% of the feed dry matter. After 48 h of incubation in buffered rumen fluid, methane production was significantly lowered by quercetin (43%), tannic acid (39%) and salicylic acid (34%) compared to the control (maize silage alone) and without changes in total volatile fatty acid production during fermentation. No other PSM reduced methane formation as compared to control but induced significant differences on total volatile fatty acid production. The observed differences were related to lipophilicity, the presence of double bond and carbonyl group, sugar moieties, and polymerization of the compounds. Our results indicate the importance of distinct molecular structures of PSMs and chemical characteristics for methane lowering properties and volatile fatty acid formation. Further systematic screening studies to establish the structure-function relationship between PSMs and methane reduction are warranted.


Assuntos
Dieta , Quercetina , Animais , Quercetina/farmacologia , Quercetina/metabolismo , Estrutura Molecular , Fermentação , Metano/metabolismo , Salicilatos/farmacologia , Rúmen/metabolismo , Ácidos Graxos Voláteis/metabolismo , Zea mays/metabolismo , Taninos/farmacologia , Taninos/metabolismo , Ração Animal/análise
8.
ACS Infect Dis ; 9(10): 1867-1877, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37696007

RESUMO

Streptococcus agalactiae is the major cause of invasive neonatal infections and is a recognized pathogen associated with various diseases in nonpregnant adults. The emergence and spread of antibiotic-resistant S. agalactiae necessitate the development of a novel antibacterial agent. Here, the potential antibacterial activities and mechanisms of ginkgolic acid C15:1 (GA (15:1)) from Ginkgo biloba against clinical S. agalactiae are characterized. The MIC50 and MIC90 values for GA (15:1) against 72 clinical S. agalactiae isolates were 6.25 and 12.5 µM, respectively. GA (15:1) showed a strong bactericidal effect against both planktonic bacteria and bacteria embedded in biofilms as well as significant effectiveness in suppressing the growth of S. agalactiae biofilms. Moreover, GA (15:1) possesses intracellular antibacterial activity and could significantly decrease the bacterial burden in the intraperitoneal infection model of S. agalactiae. Mechanistic studies showed that GA (15:1) triggers membrane damage of S. agalactiae through a unique dual-targeting mechanism of action (MoA). First, GA (15:1) targets phospholipids in the bacterial cytoplasmic membrane. Second, by using mass-spectrometry-based drug affinity responsive target stability (DARTS) and molecular docking, lipoprotein signaling peptidase II (lspA) was identified as a target protein of GA (15:1), whose role is crucial for maintaining bacterial membrane depolarization and permeabilization. Our findings suggest a potential therapeutic strategy for developing GA (15:1) to combat S. agalactiae infections.


Assuntos
Antibacterianos , Streptococcus agalactiae , Humanos , Adulto , Recém-Nascido , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Salicilatos/farmacologia , Bactérias
9.
Bioorg Med Chem ; 92: 117417, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37531922

RESUMO

Salirasib, or farnesylthiosalicylic acid (FTS), is a salicylic acid derivative with demonstrated antineoplastic activity. While designed as a competitor of the substrate S-farnesyl cysteine on Ras, it is a potent competitive inhibitor of isoprenylcysteine carboxymethyl transferase. In this study, the antiproliferative activity on six different solid tumor cell lines was evaluated with a series of lipophilic thioether modified salirasib analogues, including those with or without a 1,2,3-triazole linker. A combination of bioassay, cheminformatics, docking, and in silico ADME-Tox was also performed. SAR analysis that analogues with three or more isoprene units or a long aliphatic chain exhibited the most potent activity. Furthermore, three compounds display superior antiproliferative activity than salirasib and similar potency compared to control anticancer drugs across all tested solid tumor cell lines. In addition, the behavior of the collection on migration and invasion, a key process in tumor metastasis, was also studied. Three analogues with specific antimigratory activity were identified with differential structural features being interesting starting points on the development of new antimetastatic agents. The antiproliferative and antimigratory effects observed suggest that modifying the thiol aliphatic/prenyl substituents can modulate the activity.


Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Salicilatos/farmacologia , Farneseno Álcool/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
10.
Oncol Rep ; 50(3)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37503758

RESUMO

Oxaliplatin (Oxa) is one of the most effective chemotherapeutic drugs used in the treatment of colorectal cancer (CRC). However, the use of this drug is associated with severe side­effects and patients eventually develop resistance to Oxa. In recent years, copper complexes have been extensively investigated as substitutes for platinum­based drugs. Therefore, a number of copper complexes have also been developed for cancer therapy, such as copper (II) complex of salicylate phenanthroline [Cu(sal)(phen)]. In the present study, the antitumor activity and the related molecular mechanisms of Cu(sal)(phen) were examined in CRC cells. As compared with the chemotherapeutic drug, Oxa, Cu(sal)(phen) was more effective in inducing apoptosis and reactive oxygen species (ROS) production, and in decreasing mitochondrial membrane potential in the CRC cell lines, HCT116 and SW480. In addition, the expression of the apoptosis­related proteins, Bcl­2 and survivin, and those of the upstream regulators, p­JAK2 and p­STAT5, were significantly decreased in the two cell lines following treatment with Cu(sal)(phen). Furthermore, the efficacy of the complex against CRC was found to be excellent in an animal model. The results of immunohistochemical analysis revealed that the expression levels of Bcl­2, survivin and Ki­67 in tumor tissues were decreased following Cu(sal)(phen) treatment. The antitumor mechanisms underlying Cu(Sal)(phen) treatment were the induction of ROS generation, the inhibition of the JAK2/STAT5 signaling pathway and the downregulation of the expression of anti­apoptotic proteins, such as Bcl­2 and survivin. On the whole, the findings of the present study indicated that Cu(sal)(phen) effectively inhibited the viability and proliferation of HCT116 and SW480 CRC cells; in the future, the authors aim to conduct further experiments in future studies to provide more evidence that supports the development of Cu(sal)(phen) as a therapeutic agent for CRC.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Animais , Oxaliplatina/farmacologia , Cobre/farmacologia , Cobre/química , Cobre/metabolismo , Survivina/metabolismo , Fenantrolinas/farmacologia , Fenantrolinas/química , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/farmacologia , Salicilatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral
11.
Sci Total Environ ; 888: 164073, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37201812

RESUMO

Ethylhexyl salicylate (EHS) is an organic UV filter commonly used in sunscreens to protect people from the UV radiation. The widespread use of EHS will enter the aquatic environment along with human activities. EHS readily accumulates in adipose tissue as a lipophilic compound, but its toxic effects on lipid metabolism and cardiovascular system of aquatic organisms have not been studied. This study investigated the effects of EHS on lipid metabolism and cardiovascular development during zebrafish embryogenesis. The results showed that EHS caused defects such as pericardial edema, cardiovascular dysplasia, lipid deposition, ischemia, and apoptosis in zebrafish embryos. In addition, qPCR and whole-mount in situ hybridization (WISH) results indicated that EHS treatment significantly altered the expression of genes related to cardiovascular development, lipid metabolism, erythropoiesis, and apoptosis. The hypolipidemic drug rosiglitazone was able to alleviate the cardiovascular defects caused by EHS, indicating that EHS affected cardiovascular development by disrupting lipid metabolism. In addition, severe ischemia caused by cardiovascular abnormalities and apoptosis were observed in the EHS-treated embryos, which was likely to be the main cause of embryonic mortality. In conclusion, this study shows that EHS has toxic effects on lipid metabolism and cardiovascular formation. Our findings provide new evidence for assessing UV filter EHS toxicity and contribute to raising awareness of the safety risks of EHS.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Humanos , Metabolismo dos Lipídeos , Raios Ultravioleta , Coração , Salicilatos/metabolismo , Salicilatos/farmacologia , Embrião não Mamífero , Poluentes Químicos da Água/metabolismo
12.
Environ Toxicol ; 38(6): 1384-1394, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36891644

RESUMO

In the present study, we investigated the antitumor effect and associated molecular mechanisms of the copper (II) complex of salicylate phenanthroline [Cu(sal)(phen)] against hepatocellular carcinoma (HCC). Cu(sal)(phen) inhibited the proliferation of HCC cells (HepG2 and HCC-LM9) and induced apoptosis of HCC cells in a dose-dependent manner by upregulating mitochondrial reactive oxygen species (ROS) production. The expression of the antiapoptotic proteins survivin and Bcl-2 was decreased, while the expression of the DNA damage marker γ-H2 AX and the apoptotic marker cleaved PARP was upregulated with Cu(sal)(phen) treatment. In vivo, the growth of HepG2 subcutaneous xenograft tumors was greatly attenuated by Cu(sal)(phen) treatment. Immunohistochemistry staining showed that the expression of survivin, Bcl-2, and Ki67 in the tumor was downregulated by Cu(sal)(phen). Toxicity experiments with BALB/c mice revealed that Cu(sal)(phen) is a relatively safe drug. Our results indicate that Cu(sal)(phen) possesses great potential as a therapeutic drug for HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/patologia , Survivina/farmacologia , Survivina/uso terapêutico , Cobre/toxicidade , Cobre/química , Fenantrolinas/farmacologia , Fenantrolinas/química , Fenantrolinas/uso terapêutico , Neoplasias Hepáticas/patologia , Salicilatos/farmacologia , Salicilatos/química , Salicilatos/uso terapêutico , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Proliferação de Células , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico , Células Hep G2
13.
Exp Parasitol ; 246: 108456, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36610471

RESUMO

Echinococcosis is a zoonotic disease caused by larval stages of the Echinococcus genus (metastasis). In this study, salicylate-coated Zinc oxide nanoparticles (SA-ZnO-NPs) were fabricated and characterized by SEM, FTIR and XRD analytical techniques. After that, different doses of SA-ZnO-NPs, SA and ZnO-NPs were taken to assess scolicidal potency. Scanning electron microscopy (SEM) micrographs were also used to evaluate the morphological deformities of treated protoscoleces. Furthermore, Caspase-3&7 inductions were examined in protoscoleces cysts treated with all formulations. Based on SEM and DLS analyses, the size of SA-ZnO-NPs was between 30 and 40 nm, with a spherical shape. The FTIR spectrum verified the presence of SA functional groups on the ZnO coating. At 20 min, SA-ZnO-NPs at 2000 µg/ml exhibited the greatest activity on protoscolices with 100% mortality, followed by ZnO-NPs at 1500 µg/ml at 10 min and SA alone at 2000 µg/ml at 30 min. The activation of Caspase-3&7 apoptotic enzyme was determined for 2000 µg/ml of SA-ZnO-NPs, ZnO-NPs and SA to be 16.4, 31.4, and 35.7%, respectively. The SEM image revealed apoptogenic alterations and the induction of tegument surface wrinkles, as well as abnormalities in rostellum protoscolices. According to the current study, SA-ZnO-NPs have a high mortality rate against hydatid cyst protoscolices. As a result, further studies on the qualitative assessment of these nanoformulations in vivo and preclinical animal trials seem to be required. Furthermore, the adoption of nano-drugs potentially offers alternative therapeutic approaches to combat hydatid cysts.


Assuntos
Equinococose , Echinococcus granulosus , Echinococcus , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Animais , Caspase 3 , Zinco , Óxido de Zinco/farmacologia , Nanopartículas Metálicas/uso terapêutico , Salicilatos/farmacologia , Salicilatos/uso terapêutico , Equinococose/tratamento farmacológico
14.
J Ethnopharmacol ; 301: 115828, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240979

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal properties of Gaultheria have been used in traditional medicine to treat pain and inflammation. AIM OF THE STUDY: Hence, the purpose of this study was to evaluate the analgesic, antipyretic, and anti-inflammatory properties of Gaultheria trichophylla Royle extract and salicylate-rich fraction in vivo, in vitro, and in silico. MATERIALS AND METHODS: In vivo analgesic, antipyretic, and anti-inflammatory of extract and a salicylate-rich fraction (at doses of 100, 200, 300, and 150 mg/kg) were assessed using healthy albino mice employing acetic acid-induced writhing, tail immersion test, carrageenan-induced inflammation, and croton oil-induced edema. For in vitro testing of extracts COX and LOX enzyme inhibition assays were used. Molecular docking studies were conducted for in silico testing of the inhibitory activity of the dominant compound Gaultherin against COX and LOX. RESULTS: G-EXT 200 and 300 and G-SAL 150 mg/kg reduced pyrexia significantly (P < 0.05 and P < 0.01). G-EXT-200, 300, and G-SAL 150 reduce the writing to a significant level (p > 0.05, p < 0.01). G-EXT 200 and 300 and G-SAL 150 mg/kg doses the analgesic effect was significant (p > 0.05, p > 0.01) and was comparable to tramadol. G-EXT 100 200, 300 mg/kg showed 43.8%, 47.94% and 56% respectively. G-SAL 150 mg, rich in salicylates, showed maximum inhibition of 65.75% next to standard drug diclofenac with 76.7% inhibition. G-EXT 100 and 200 mg/kg dose showed significant (p < 0.05) reduction in ear edema. With 300 mg/kg dose the effect was more (61.89%, p < 0.01). The salicylate-rich fraction G-SAL and Celecoxib showed an almost similar effect (p < 0.01). Significance inhibition was shown in the COX-2 test (G-EXT 39.70 and G-SAL 77.20 IC50 µg/ml) and in the 5-LOX test (G-EXT 28.3 and G-SAL 39.70 IC50 µg/ml). The preliminary in silico results suggest that the investigated compound showed excellent inhibitory activity against COX and LOX enzymes as evident from the free binding energy. Molecular docking revealed that Gaultherin binds well in the COX and LOX enzyme catalytic region. CONCLUSION: The extract and salicylate-rich fraction obtained from G. trichophylla showed significant analgesic, anti-inflammatory, and antipyretic effects in vivo, in vitro, and in silico assays that support its use in traditional medicine.


Assuntos
Antipiréticos , Ericaceae , Gaultheria , Animais , Camundongos , Gaultheria/química , Antipiréticos/farmacologia , Simulação de Acoplamento Molecular , Anti-Inflamatórios/efeitos adversos , Analgésicos/efeitos adversos , Salicilatos/química , Salicilatos/farmacologia , Salicilatos/uso terapêutico , Febre/tratamento farmacológico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Carragenina , Inflamação/tratamento farmacológico
15.
Pest Manag Sci ; 79(2): 760-770, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36259292

RESUMO

BACKGROUND: Aphids have been mainly controlled by traditional chemical insecticides, resulting in unamiable risk to the environment over the last decades. Push-pull strategy is regarded as a promising eco-friendly approach for aphid management through repelling aphid away and attracting their natural enemy. Methyl salicylate (MeSA), one of typical HIPVs (herbivore-induced plant volatiles), can repel aphids and attract ladybugs. Our previous studies discovered a new lead compound 3e, a salicylate-substituted carboxyl (E)-ß-farnesene derivative that had effective aphid-repellent activity. However, whether 3e has attractive activity to ladybug like MeSA is unknown. Meanwhile, to discover a new derivative for both deterring aphid and recruiting ladybug is meaningful for green control of aphids. RESULTS: Through the structural optimization of 3e, 14 new derivatives were designed and synthesized. Among them, compounds 4e and 4i had good aphid (Acyrthosiphon pisum) repellent activity, and compounds 3e, 4e and 4i had significant ladybug (Harmonia axyridis) attractive activity to males. Particularly, 4i exhibited manifest attractive effect on the females as well. Binding mechanism showed that 4i not only bound effectively with the aphid (Acyrthosiphon pisum) target ApisOBP9 thanks to its multiple hydrophobic interactions and hydrogen-bond, but also had strong binding affinity with ladybug target HaxyOBP15 due to the suitable steric space. Additionally, 4i displayed low toxicity to bee Apis mellifera. CONCLUSION: Compound 3e does exhibit attractive activity to male ladybug as MeSA. However, the new derivative 4i, with both pleasant aphid-repellent and ladybug-attraction activities, can be considered as a novel potential push-pull candidate for aphid control in sustainable agriculture. © 2022 Society of Chemical Industry.


Assuntos
Afídeos , Besouros , Repelentes de Insetos , Animais , Abelhas , Afídeos/metabolismo , Salicilatos/farmacologia , Salicilatos/metabolismo , Monoterpenos Acíclicos/farmacologia , Repelentes de Insetos/farmacologia
16.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430660

RESUMO

To date, the effect of resveratrol on tinnitus has not been reported. The attenuative effects of resveratrol (RSV) on a salicylate-induced tinnitus model were evaluated by in vitro and in vivo experiments. The gene expression of the activity-regulated cytoskeleton-associated protein (ARC), tumor necrosis factor-alpha (TNFα), and NMDA receptor subunit 2B (NR2B) in SH-SY5Y cells was examined using qPCR. Phosphorylated cAMP response element-binding protein (p-CREB), apoptosis markers, and reactive oxygen species (ROS) were evaluated by in vitro experiments. The in vivo experiment evaluated the gap-prepulse inhibition of the acoustic startle reflex (GPIAS) and auditory brainstem response (ABR) level. The NR2B expression in the auditory cortex (AC) was determined by immunohistochemistry. RSV significantly reduced the salicylate-induced expression of NR2B, ARC, and TNFα in neuronal cells; the GPIAS and ABR thresholds altered by salicylate in rats were recovered close to their normal range. RSV also reduced the salicylate-induced NR2B overexpression of the AC. These results confirmed that resveratrol exerted an attenuative effect on salicylate-induced tinnitus and may have a therapeutic potential.


Assuntos
Neuroblastoma , Resveratrol , Zumbido , Animais , Humanos , Ratos , Ratos Sprague-Dawley , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Salicilatos/farmacologia , Zumbido/induzido quimicamente , Zumbido/tratamento farmacológico , Zumbido/patologia , Fator de Necrose Tumoral alfa/uso terapêutico , Modelos Animais de Doenças
17.
Genes (Basel) ; 13(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36292584

RESUMO

Melatonin was discovered in plants in the late nineties, but its role, signaling, and crosstalk with other phytohormones remain unknown. Research on melatonin in plants has risen dramatically in recent years and the role of this putative plant hormone under biotic and abiotic stress conditions has been reported. In the present review, we discuss the main functions of melatonin in the growth and development of plants, its role under abiotic stresses, such as water stress (waterlogging and drought), extreme temperature (low and high), salinity, heavy metal, and light-induced stress. Similarly, we also discuss the role of melatonin under biotic stresses (antiviral, antibacterial, and antifungal effects). Moreover, the present review meticulously discusses the crosstalk of melatonin with other phytohormones such as auxins, gibberellic acids, cytokinins, ethylene, and salicylic acid under normal and stressful conditions and reports melatonin receptors and signaling in plants. All these aspects of melatonin suggest that phytomelatonin is a key player in crop improvement and biotic and abiotic stress regulation.


Assuntos
Melatonina , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Receptores de Melatonina , Antifúngicos/farmacologia , Plantas , Citocininas , Etilenos/farmacologia , Ácidos Indolacéticos , Antibacterianos/farmacologia , Antivirais/farmacologia , Salicilatos/farmacologia
18.
Cells ; 11(19)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230898

RESUMO

The cytoprotective effects of a novel hydroalcoholic extract (0.01-5 mg/mL) from Lens culinaria (Terre di Altamura Srl) were investigated within murine native skeletal muscle fibers, bone marrow cells, and osteoblasts, and in cell lines treated with the apoptotic agent staurosporine (2.14 × 10-6 M), the alkylating drug cisplatin (10-4 M), the topoisomerase I inhibitor irinotecan (10-4 M), the antimitotic pro-oxidant doxorubicin (10-6 M), and the immunosuppressant dexamethasone (2 × 10-6 M). An amount of 10g of plant material was used to obtain a 70% ethanol/water product, following two-step extraction, evaporation, lyophilization, and storage at -20 °C. For the murine osteoblasts, doxorubicin reduced survival by -65%, dexamethasone by -32% and -60% after 24 and 48 h of incubation time, respectively. The extract was effective in preventing the osteoblast count-reduction induced by dexamethasone; it was also effective at preventing the inhibition of mineralization induced by dexamethasone. Doxorubicin and cisplatin caused a significant reduction in cell growth by -77% for bone marrow cells, -43% for irinotecan, and -60% for dexamethasone, but there was no evidence for the cytoprotective effects of the extract in these cells. Staurosporine and doxorubicin caused a fiber death rate of >-40% after 18 and 24 h of incubation, yet the extract was not effective at preventing these effects. The extract was effective in preventing the staurosporine-induced reduction of HEK293 proliferation and colony formation in the crystal violet DNA staining and the clonogenic assays. It was also effective for the cisplatin-induced reduction in HEK293 cell proliferation. The extract, however, failed to protect the SHSY5Y neurons against cisplatin and irinotecan-induced cytotoxicity. A UV/VIS spectroscopy analysis showed three peaks at the wavelengths of 350, 260, and 190 nm, which correspond to flavonoids, proanthocyanins, salicylates, and AA, constituting the extract. These data suggest the possible development of this extract for use against dexamethasone-induced bone loss and renal chemotherapy-induced damage.


Assuntos
Antimitóticos , Dexametasona , Animais , Antimitóticos/metabolismo , Antimitóticos/farmacologia , Cisplatino/metabolismo , Cisplatino/farmacologia , Dexametasona/farmacologia , Doxorrubicina/farmacologia , Etanol/farmacologia , Flavonoides/farmacologia , Violeta Genciana/metabolismo , Violeta Genciana/farmacologia , Células HEK293 , Humanos , Imunossupressores/farmacologia , Irinotecano/farmacologia , Camundongos , Osteoblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Salicilatos/metabolismo , Salicilatos/farmacologia , Estaurosporina/farmacologia , Inibidores da Topoisomerase I/metabolismo , Inibidores da Topoisomerase I/farmacologia , Água/metabolismo
19.
Chembiochem ; 23(24): e202200532, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36281941

RESUMO

We report the synthesis, characterisation, and anti-osteosarcoma properties of a gallium(III) complex (1) comprising of two 1,10-phenanthroline ligands and salicylate, a non-steroidal anti-inflammatory drug. The gallium(III) complex 1 displays micromolar potency towards bulk osteosarcoma cells and osteosarcoma stem cells (OSCs). Notably, the gallium(III) complex 1 exhibits significantly higher toxicity towards OSCs grown in monolayer and three-dimensional cultures than cisplatin, a frontline anti-osteosarcoma drug. Nuclei isolation and immunoblotting studies show that the gallium(III) complex 1 enters osteosarcoma cell nuclei and induces DNA damage. Flow cytometry and cytotoxicity studies (in the presence of prostaglandin E2) indicate that the gallium(III) complex 1 downregulates cyclooxygenase-2 (COX-2) expression and kills osteosarcoma cells in a COX-2-dependent manner. Further, the mode of osteosarcoma cell death evoked by the gallium(III) complex 1 is characterised as caspase-dependent apoptosis.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Gálio , Osteossarcoma , Humanos , Fenantrolinas/farmacologia , Gálio/farmacologia , Gálio/uso terapêutico , Salicilatos/farmacologia , Salicilatos/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Apoptose , Células-Tronco/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
20.
PLoS One ; 17(7): e0269983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35776756

RESUMO

Tetramethrin (Tm) is a commonly used pesticide that has been reported to exert estrogen-antagonistic effects selectively on female rats. The present study was undertaken to assess the protective role of lobaric acid (La) on estrous cycle in Tm-treated female Wistar rats. Female rats were exposed to Tm (50 mg/kg b.w/day) only or in combination with La at low (50 mg/kg b.w/day) or high (100 mg/kg b.w/day) dose for 30 days. The results showed that Tm altered the estrous cycle of female rats by decreasing the levels of luteinizing hormone, follicular-stimulating hormone, progesterone, estrone, and estradiol while increasing testosterone level. The morphology of vaginal smears of Tm-treated female rats showed the presence of abnormal cells and/or structures at different phases of estrus cycle. Strikingly, in (Tm + La)-treated rats, all the observed adverse effects of Tm on the hormonal parameters, cell morphology, and the length of each phase of estrous cycle were significantly diminished in a dose-dependent manner. The docking results showed that La competes with Tm for Gonadotropin-Releasing Hormone (GnRH) receptor, thereby reducing the toxicity of Tm but did not cancel the response of GnRH receptor completely. In conclusion, our results designated that La could be used as a potential candidate in the management of insecticide-induced alterations of the reproductive cycle of rodents.


Assuntos
Ciclo Estral , Salicilatos , Animais , Depsídeos , Ciclo Estral/fisiologia , Feminino , Lactonas , Piretrinas , Ratos , Ratos Wistar , Salicilatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...